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Abstract. A simplified model of the solar system has been developed along with an integration
method, enabling to compute planetary and lunar ephemerides to an accuracy better than 1 and 2
milliarcsecs, respectively. On current personal computers, the integration procedure (SOLEX) is fast
enough that by using a relatively small (� 20 Kbytes/Cy) database of starting conditions, any epoch
in the time interval (up to �100 Cy) covered by the database can be reached by the integrator in
a few seconds. This makes the algorithm convenient for the direct computation of high precision
ephemerides over a time span of several millennia.
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1. Introduction

Numerical integration of the equations of motion is currently the most accurate
method of computing fundamental ephemerides. Accordingly, the planetary and
lunar ephemerides compiled by the Astronomical Almanac are based on the DE200
integration carried out at the Jet Propulsion Laboratory in the early 80s (Newhall
et al., 1983; Standish, 1982). On the other hand, numerical integration is normally
not used by routine procedures computing planetary and lunar positions. When
low to moderate precision is enough, algorithms are used (Meeus, 1991) which are
based on truncated versions of the huge numerical series produced by analytical
or semi-analytical theories (Bretagnon and Francou, 1988; Chapront-Touzé and
Chapront, 1983, 1988). If high precision is demanded, Chebyshev polynomials can
be used, interpolating the numerical integration output over short and contiguous
intervals of time (Newhall, 1989; Kammeyer, 1989). In the latter case, a drawback
is that only a limited span of time can be covered by the stored data, unless a
large amount of disk memory is used. For example, a database of 840 Kbytes
is used to store the Chebishev coefficients for the DE200 ephemerides, covering
about 250 years (Kammeyer, 1989). The question arises if the direct use of a
numerical integrator could be more convenient for the quick routine computation
of ephemerides than the interpolation of pregenerated data. It is the purpose of this
paper to discuss the above question and to propose a numerical algorithm which
can conveniently perform the required task.
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2. Direct Integration versus Interpolation of Pre-generated Data

The main disadvantage of numerical integration for the computation of ephemerides
is that it cannot immediately find the position of a celestial body at a given instant.
To do the job, a suitable set of starting conditions has to be fed to the integrating
procedure, and the program has to run step-by-step until the desired epoch is
reached. At that point, all the planetary positions will be known at once, and if a
table of ephemerides is desired, subsequent calculations will produce it with a speed
comparable if not better than any other method. The initial overcost of running the
integrator up to the desired epoch can be reduced by creating and storing on disk
memory a database of precalculated starting conditions, among which the program
will chose the one which is closest in time to the target epoch. Of course the time
spacing between stored starting points can be made small enough to make the
maximum initial ‘go to epoch’ time as short as desired for a given machine. This is
thus a typical case in which speed can be bought with disk memory and vice-versa,
according to the individual hardware and preferences.

Suppose you have got a suitable integration program already, and have built a
database of starting conditions smaller than the database of Chebyshev coefficients
which would be needed to cover the same range of epochs. The integration algo-
rithm can be convenient against the Chebyshev interpolation only if the average ‘go
to epoch’ waiting time is some small, tolerable value, say a fraction of a minute.
Whether this condition is matched or not is of course dependent on the machine
running the program. As a consequence, Chebyshev interpolation is best suited for
slow machines, while direct integration would be best suited for fast machines.
Optimization of speed is thus very important for the convenience of the direct inte-
gration approach, and the selection of a mathematical model as simple as possible
and of an integration method as fast as possible appears to be essential.

3. Mathematical Model

A reasonably accurate model of the Solar System should include, besides the purely
Newtonian accelerations, the additional perturbations due to general relativistic
effects, figure effects and tidal forces. A model taking full account of all the above
contributions, as the one developed at JPL (Newhall et al., 1983) would require
too much computational effort to be suitable for the practical purpose of this work.
Indeed, this model has been recently implemented (Moshier, 1992) in a program
(de118i) running on personal computers and available on computer networks. In
a test run on a PC equipped with a 75 MHz 486 dx4 processor, about hundred
seconds are required to integrate one year of motion of the solar system. Assuming
a tolerable ‘go to epoch’ waiting time of 5 seconds, a database of starting conditions
recorded at one month intervals should be provided to the program. This would
be about twice larger than the corresponding database of Chebyshev coefficients,
which would make the direct use of this integrator inconvenient.
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Following the above considerations, it seemed attractive to find out if a conve-
niently simple model could reproduce the planetary and lunar ephemerides (DE200)
to an accuracy of the order of a few milliarcseconds. The strategy was to start with
a simple model, fitting it to the DE200 positions, and then to improve it, until
an acceptable accuracy (revealed by the post-fit residuals) was reached. A discus-
sion follows about how the various perturbations have been considered in the final
model.

3.1. GENERAL RELATIVISTIC EFFECTS

The approach was to consider the relativistic perturbations in a two-body approxi-
mation, and to simulate the major one through the addition of a dipole-like potential
(Nobili and Roxburgh, 1986)

R =
3(GMo)

2

c2r2 : (1)

As described by Nobili and Roxburgh (1986) this reproduces the secular advance
of perihelion predicted by general relativityexactly, neglecting a small contraction
of the orbit given in Equation 2 and an even smaller periodic oscillation around
the average orbit having an amplitude given in Equation 3. The constant orbital
contraction given in Equation 2 is easily simulated by a corresponding fractional
correction to the mass of the Sun (Equation (4)).
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According to the above considerations, the following Equation 5 was adopted
for computing the acceleration of the ith body due to the Sun, while the pure
Newtonian field was used for computing the perturbative planetary accelerations.

�roi = �
GMo

jroi j3
(ri � ro)

�
1 �

9GMo

c2ai
+

6GMo

c2jroi j

�
: (5)

The accuracy of the above model was tested by comparison with the full PPN
relativistic model implemented by Moshier (1992) over a time span of up to
hundred centuries (Figure 1). No relevant secular drifts were observed, and the
maximum deviation was a periodic residual with an amplitude of � 1 milliarcsec
in the longitude of Mercury. It is worth to point out that, differently from a full or
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even a simplified PPN formulation (Quinn et al., 1991), the acceleration computed
in Equation 5 is not dependent on the velocity. This gives the advantage of allowing
the use of a simpler and comparatively more efficient integration algorithm (Press
et al., 1992).

3.2. FIGURE AND TIDAL EFFECTS

Figure effects strongly influence the lunar orbit. Seeking for a reasonably good
compromise between computational effort and precision the semiempirical model
depicted in Equations (6–9) was developed. In a geocentric equatorial reference
frame, x y and z are the coordinates of the Moon, r is the Earth–Moon distance,
�x �y and �z are the components of the acceleration due to the Earth and acting on the
Moon, " is the obliquity of the ecliptic, zec is the geocentric ecliptic z coordinate
of the Moon and rs is the Sun–Moon distance.

�x =
��e

r3

�
[1 + S]x+Qt

x+ y�

r5

�
; (6)
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��e
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The six Q terms appearing in Equations (6–9) are semiempirical parameters
whose value were obtained from the fitting procedure. Their meaning is as follows.

Qe represents the coefficient of the second order zonal harmonic of the Earth
figure. Its expected value is

Qe = �15
2 J

e
2 r

2
e = �3:303177 � 105 km2

:

The value resulting from the fitting procedure was �3:303240 � 105 � 0:1 km2.
Qm represents the coefficient of the second order zonal harmonic of the Moon

figure. The approximation was made of considering the Moon equator coinciding
with the ecliptic plane. The expected value is

Qm = �15
2 J

m
2 r

2
m = �4:6176 � 103 km2

:

The value resulting from the fitting was �6:3974 � 103 � 0:1 km2. The discrepancy
most likely arises from the fact that tesseral harmonics were not explicitly consid-
ered in the model. Therefore the optimized value of Qm includes the contribution
of second order tesseral harmonics, averaged with respect to the longitude.
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Q1 represents the coefficient for the latitude independent parts of the second
order zonal harmonics of the Earth and the Moon, collected together. Its expected
value is

Q1 = �1
5(Qe +Qm) = 6:698706 � 104 km2

:

The fitting gave Q1 = 6:48447 � 104 � 0:1 km2. As before, the omission from
the model of relevant perturbations (tesseral harmonics of the Moon figure, higher
order zonal harmonics of the Earth figure, relativistic effects in the Earth–Moon
interaction) most likely account for the observed discrepancy.

Qt is the coefficient for the tidal acceleration, where � is the phase angle. The
expected value is

Qt = 3
�m

�e
k1r

5
e = 1:16847 � 1017 km5

;

when the same values are given to the Love number k1 and to the phase angle � as
those adopted by Moshier (1992). The fitting gave Qt = 1:16849 � 1017 km5.

Q2 is an empirical parameter. The corresponding correction is probably related
to the main term of the libration series (the one dependent on the Earth’s mean
anomaly). It has the effect of about halving the average residuals, stably removing a
periodical deviation having a period of 1.0 y. The fitting gaveQ2 = 2:649�107 km2.

Q0 is an empirical parameter which is needed to minimize the residuals in the
Earth–Moon distance. The fitting gave Q0 = �5:34126 � 10�8.

The effect of the figure of the Earth has been taken in account also when
computing the Earth–Sun acceleration. Thus a further term

Qe

r2

 
z

2

r2 �
K

5

!

has been added to the summation in Equation 5 in the case of i = Earth (K = 1
for the x and y components, K = 3 for the z component).

3.3. PERTURBATIONS BY THE ASTEROIDS

In the DE200 ephemerides, the forces on each planet and on the Moon due to the
five asteroids Ceres, Pallas, Vesta, Iris and Bamberga have been considered. In the
very recent DE403 ephemerides (Standish et al., 1995), the forces on each planet
and on the Moon due to the three major asteroids, plus the forces on Earth, Moon
and Mars due to almost three hundred minor asteroids have been taken in account.
In both cases, the asteroids’ orbits were considered as fixed Keplerian ellipses. The
effect of the above approximation, as well as the effect of neglecting some or all of
the asteroids has been investigated on a fictitious solar system from which the Moon
had been removed and only Earth, Mars, Jupiter and Saturn were left as planets. The
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positions computed by a full numerical integration including the five asteroids were
considered as ‘true’, and the other simplified models were optimized by fitting them
to these ‘true’ positions along a time span of 100–400 years. The models fitted along
a 400 y time span were then integrated to a total time of 8000 y and the deviations
of Earth, Mars and Jupiter from the ‘true’ positions were compared. Over the time
span of one century, the model with Keplerian asteroids gives a maximum error in
the longitude of Mars of the order of 1 milliarcsec, compared with 4 milliarcsecs
for a fully integrated model including only Ceres, Pallas and Vesta and about 9
milliarcsecs for a model neglecting all the asteroids. However, the Keplerian model
produces better results only if the time span is limited to a few centuries. After
about 15 centuries, a fully integrated model considering only Ceres, Pallas and
Vesta gives better precision, and beyond 60 centuries even a model neglecting all
the asteroids is about as good, giving a longitude deviation in the orbit of Mars of
about 0.4 arcsecs.

In the present model only the three major asteroids were included and they were
treated in the same way as the planets, i.e. all the mutual newtonian interactions
were taken in account and their orbits were numerically integrated.

3.4. FITTING THE MODEL: SHORT AND LONG TERM PRECISION

The model described in the above section was fitted to the DE200 ephemerides
generated by the program de118i (Moshier, 1992), using the numerical integrator
described in the next section and a Newton–Gauss least squares method. A numer-
ical precision of 19 decimal digits (80 bits IEEE format) was used. The fitting
was performed along a time span of about 500 y, starting from the same point as
DE200 (June 28, 1969, JDE 2440400.5) and going backwards in time. A ‘short’
fitting was also performed along a time span of 50 y and going forward in time.
The starting coordinates and velocities of the nine planets and the Moon, plus the
six Q parameters described in section 3.2 were optimized. Starting conditions for
the three asteroids Ceres, Pallas, Vesta were first determined from their osculating
elements at the epoch November 13, 1996, JDE 2450400.5 (Batrakov and Shor,
1995) and then extrapolated back at the starting epoch JDE 2440400.5 by numeri-
cal integration. Their positions computed along the decade 1986–1996 resulted in
perfect agreement with the data given by the Astronomical Almanac. Consistently
with Moshier (1992), precession angles were computed using Laskar’s formulae
(1986). Nutation was computed using only the first term of the IAU nutation series
(Hohenkerk et al., 1992). To avoid unnecessary computing effort and possible
accumulation of roundoff error, the precession and nutation adjustments of the
coordinates were made at intervals of 60 d.

Figure 1 shows a plot of the right ascension deviation of the present model
from the DE200 values for the Moon, Mercury, Venus, Earth and Mars. In order to
avoid a long-term discrepancy in the planetary positions arising from the different
treatment of the asteroids’ orbits (see later), the comparison is made for the planets
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Figure 1. Maximum local (within 2 percent from given time) right ascension deviations from the
reference data. The data for the planets are computed omitting the asteroids from both the reference
and the tested model. Time is backwards from JDE 2440400.5.

between models from which the asteroids have been removed. It is apparent from
Figure 1 that the errors due to the approximate treatment of relativistic perturbations
may have some little relevance only in the case of Mercury, while for the other
planets they are so small to be totally negligible. Indeed, for the planets from Venus
through Saturn, the effect of missing or imperfect treatment of the perturbations
due to the asteroids is much larger.

Figure 2 shows the short term right ascension deviations of Earth, Mars and
Moon from the DE200 values, inclusive of the asteroids perturbations, as resulting
from the ‘short’ fitting.

Figure 3 shows the analogous deviations of Earth and Mars as resulting from
the ‘long’ fitting and the successive extrapolation extending to 80 Cy. The solid
lines (a) in Figure 3 refer to a model including five asteroids (Iris and Bamberga
in addition to the three major ones), while the dotted lines (b) refer to a model
containing only the major planets. The ‘short’ fitting (Figure 2) gives an agreement
similar to that in Figure 1, while for the ‘long’ fitting (Figure 3) the deviations are
much larger than the corresponding ones plotted in Figure 1. It is very significant
that, when the asteroids are included in the model, a better agreement with the
DE200 model is obtained only over a relatively short time span. In the long run,
the deviations are smaller for a model neglecting the asteroids. This indicates that
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Figure 2. Maximum bimonthly right ascension deviations from DE200 after a short-term fitting.
Only the three major asteroids are included in the tested model.

the larger discrepancies (compare the plots in Figure 3 and Figure 1) reflect the
imperfect treatment of the asteroids’ perturbations by the DE200 model, which
probably adequately describes the asteroids’ positions for not longer than a few
decades. It is worth to note in this respect that the secular drift of the perihelion of
Pallas (as computed by the present integration) is �0:32�/Cy. It is thus apparent
that, in order to produce high precision ‘long’ ephemerides without integrating
the asteroid’s orbits, at least the secular variation of their orbital elements should
be taken in account. In summary, compared to the DE403 model over the range
of about a century, the planetary positions computed by the present model and
the DE200 model are both less precise, since they both neglect a large number of
minor asteroid perturbations. In the long run, however, the accuracy of the DE403
model degrades because of the approximation of considering Keplerian orbits for
the asteroids, and the present model is likely to be more accurate.

Turning to the Moon, the short term angular deviation of the Moon (Figure 2)
is kept within 2 milliarcsecs (average deviation� 0:6 milliarcsec). Although being
about 20 times larger than the uncertainty of the best present observational data
(Standish, et al., 1995), this is still about 20 times smaller than the error carried
by analytical theories (Chapront–Touzé and Chapront, 1983) and is quite adequate
for most purposes. In the long run (� 80 Cy, Figure 1), the discrepancy from
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Figure 3. Maximum local (within 2 percent from given time) right ascension deviations from DE200,
when (a) the five asteroids are included in the tested model and (b) the asteroids are omitted from the
tested model.

DE200 increases by about a factor of 50, still remaining about two orders of
magnitude smaller than that of improved analytical theories (Moshier, 1992). On
the other hand, the intrinsic uncertainty of long term extrapolation of observational
data (especially considering the quadratically growing effect of tidal acceleration)
makes this model practically as adequate as the JPL DE200 and DE403 models for
the computation of ephemerides in the far past or future.

4. Numerical Integrator

Among the various integration techniques, extrapolation methods are becoming
increasingly popular because of their high accuracy, efficiency, flexibility and
easiness to program (Press et al., 1992; Fukushima, 1989). After some experiments
with various algorithms, the selected method was the one given by Press et al.
(1992) for second-order conservative equations. In this method, n trial values of
the dependent variables are computed at the end of a large intervalH , by using each
time a different stepsize h1; : : : ; hn, where the hj are submultiples of H such as
H;H=2;H=3 and so on. The computation is made according to Equations (10–12),
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where x0 and xm are the positional coordinates at the beginning and at the end of
the interval H , respectively, with H = mh.

�0 = h( _x0 +
1
2h�x0); x1 = x0 +�0; (10)

�k = �k�1 + h
2�xk; xk+1 = xk +�k k = 1; : : : ;m� 1; (11)

_xm =
�m�1

h
+
h

2
�xm: (12)

As shown by Gragg (1965), each estimate xj can be expressed as an even power
series of h

xj = a0 + a1h
2
j + � � �+ an�1h

2(n�1)
j + � � � (13)

(Equation 13), where a0 is the true value of the variable x, which can thus be
computed by extrapolating the series of n trial xj values to h = 0. The conventional
way of performing the polynomial extrapolation (Deuflhard, 1985) is based on
a recursive algorithm which requires a computing time which is not negligible
compared to the time spent on function evaluation. In order to save as much
computing time as possible an alternative approach was adopted, which does not
seem to have been used before. The extrapolation to h = 0 is equivalent to the
solution for the variable a0 of the system of n linear equations (13) (j = 1; : : : ; n),
where by a proper choice of the time unit the hj can be expressed as rational
numbers. The solution of Equations (13) gives a0 (actually, its extrapolated value
n
a0 based on n trials) as a linear combination of the computed xj values of the type

n
a0 =

1
nb0

nX
j=1

n
bjxj ; (14)

where the coefficients n
bj are integer numbers of alternating sign such that �n

bj =
n
b0. If the coefficients n

bj are independently determined for a given sequence
of stepsizes hj and a given number of trials n (see Table I), the extrapolated
value n

a0 can be straigthforwardly calculated by Equation (14). By using this
approach, the extrapolation procedure becomes almost costless in computing time,
and for a system of 11 bodies, about 25 percent of total computing time is saved
(more than 50 percent for a two-body system). The roundoff error implied in
Equation (14) depends on the magnitude of the coefficients n

bj relative to n
b0,

which in turn depends on the adopted sequence of stepsizes. If each jnbj j does
not exceed n

b0 by more than about one order of magnitude, the roundoff error
does not exceed the one involved in the conventional extrapolation algorithm. A
convenient sequence of stepsizes fulfilling the above condition is: hj = H=mj ,
where mj = 1; 2; 3; 4; 5; 6; 8; 10; 12 (see Table I).

cele1763.tex; 27/08/1997; 8:39; v.7; p.10



REAL TIME PRODUCTION OF FUNDAMENTAL EPHEMERIDES 303

Ta
bl

e
I

C
oe

ffi
ci

en
ts

of
th

e
ex

tr
ap

ol
at

io
n

se
ri

es
(E

qu
at

io
n

14
)

fo
r

th
e

se
qu

en
ce

of
st

ep
si

ze
s

H

=
m

,w
it

h

m

=

1;

2;

3;

4;

5;

6;

8;

10

;

12
(n

=

nu
m

be
r

of
te

rm
s

in
cl

ud
ed

in
th

e
se

ri
es

,m

0

=

st
ar

ti
ng

va
lu

e
of

m

).

m

0

=

1

n

=

9

n

=

8

n

=

7

n

=

6

n

=

5

n

=

4
n

=
3

n

=

2

n
b

0
45

85
03

32
52

80
00

49
03

77
88

80
0

63
74

91
25

44
00

19
95

84
00

36
28

80
25

20
12

0
3

n
b

1
17

0

�

26
33

46
2

�

66
42

�

7
5

�

1

n
b

2

�

30
80

56
32

11
53

15
2

�

35
97

83
42

4
16

89
60

�

24
57

6
89

6

�

12
8

4

n
b

3
24

14
92

10
48

1

�

38
74

20
48

9
50

92
42

70
94

3

�

97
43

08
5

53
14

41
�

65
61

24
3

n
b

4

�

16
82

39
82

48
96

0
14

39
48

51
32

8

�

98
24

48
60

31
36

92
27

46
88

�

20
97

15
2

81
92

n
b

5
25

17
70

01
95

31
25

�

12
81

73
82

81
25

49
98

77
92

96
87

5

�

24
41

40
62

5
19

53
12

5

n
b

6

�

10
04

60
71

56
00

96
0

32
23

33
84

68
48

�

74
49

49
33

49
37

6
18

13
98

52
8

n
b

7
41

12
17

34
87

88
22

4

�

54
97

55
81

38
88

40
20

08
93

89
05

6

n
b

8

�

83
00

78
12

50
00

00
0

39
06

25
00

00
00

n
b

9
54

16
53

10
22

31
55

2

m

0

=

2

n
b

0
57

89
18

34
00

0
68

10
80

40
0

32
43

24
00

16
63

20
15

12
0

10
5

5

n
b

1

�

29
17

2
12

01
2
�

13
72

8
10

56

�

76
8

28

�

4

n
b

2
27

10
34

91

�

47
82

96
9

23
02

91
1

�

72
17

1
19

68
3

�

24
3

9

n
b

3

�

19
91

47
52

00
18

74
32

96
0

�

46
85

82
40

72
08

96

�

81
92

0
32

0

n
b

4
30

51
75

78
12

5

�

17
08

98
43

75
24

41
40

62
5

�

19
53

12
5

78
12

5

n
b

5

�

12
33

20
88

40
50

43
52

50
17

90

�

36
84

65
76

0
14

69
66

4

n
b

6
51

11
01

10
82

24
�

75
16

19
27

68
20

13
26

59
2

n
b

7

�

10
37

59
76

56
25

0
53

71
09

37
50

n
b

8
67

91
56

08
88

32

cele1763.tex; 27/08/1997; 8:39; v.7; p.11



304 ALDO VITAGLIANO

In the numerical integration of the solar system the stepsize can be kept con-
stant without substantial loss of efficiency, because the orbit of the Moon, which
determines the optimal stepsize, is only moderately eccentric. Therefore the extrap-
olation method can be used without need of getting an error estimate along with
each extrapolated value. Nevertheless it is worth to point out that, if in a more
general case an adaptive stepsize is required, a conservative error estimate on
each variable can be obtained by evaluating n

an�1, the highest order coefficient
in expansion 13, and setting the error to n

an�1h
2(n�1)
n , where hn is the smallest

stepsize in the adopted sequence of stepsizes. The coefficient nan�1 can in turn be
evaluated in the same way as n

a0, via a preliminary solution of the linear equations
(13), giving the integer coefficients n

cj such that

n
an�1 =

1
nc0

nX
j=1

n
cjxj; (15)

where �n
j=1

n
cj = 0 (Table II).

The maximum number nmax of trial estimates (i.e. the maximum number of
terms used in Equations (13) and (14) which is meaningful to perform depends
on the arithmetic precision carried by the computer. Thus, nmax = 9 if extended
precision arithmetics (80 bits IEEE format) is used, while nmax = 8 if standard
double precision arithmetic (64 bits IEEE format) is adopted. Larger values of n
will cause unnecessary waste of computing time and accumulation of roundoff
error.

If the orbit controlling the optimal stepsize has a low to moderate eccentricity,
as is the case with the moon orbit, an interesting property of the extrapolation
series (13) allows a further improvement of the integrator efficiency. Computer
experiments show that, when different values of n are used, and provided that the
stepsize does not exceed a critical value above which numerical instability starts
to appear, the truncation errors in longitude have opposite signs when even or odd
values of n are used. That is, the estimated position n

a0 at the end of each large
stepsize H is slightly ahead of the true position when n is even and slightly behind
it when n is odd. This means that the errors tend to cancel if the estimates n

a0 and
n�1

a0 (obtained using the two sequences of n stepsizesH;H=2;H=3 : : : and n�1
stepsizes H=2;H=3; : : : ; respectively) are combined with appropriate weights.
This combination can be performed at no extra cost by appropriately weighting the
n
bj and n�1

bj coefficients (Equation 14, Table I) resulting from the two sequences
of stepsizes. Optimal combination weights for many different stepsizes were found
by computer experiments. The general finding was that for any given stepsize (not
exceeding a critical value corresponding to an angular distance of about 45�), the
truncation error can be reduced by as much as four orders of magnitude by an
appropriate choice of weights, leading to an overall improvement of the efficiency
of up to 60 percent (see Figure 4).
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Figure 4. Integration error on the Moon’s orbit, using different stepsizes H (days) and number of
trial estimates n, with 80 bits arithmetics (A) and 64 bits arithmetics (B). Asterisked values of n
(dotted lines) refer to the use of combined extrapolation series (see text and Table III). The plotted
data are the right ascension deviations from a reference integration run with H = 1:0 d and n = 9.

Combination weights which were found convenient in the integration of the
moon orbit (using a stepsize H = 3:0 d and extended precision arithmetics) are
1 and 1

8 , for the series with n = 9;m0 = 1 and n = 8;m0 = 2, respectively.
The above choice gives a precision which is close to the limit of roundoff error for
this integration method (using 80 bits arithmetics). If the precision requirements
are slightly relaxed, a 30 percent faster integration can be obtained by combining
the series with n = 8;m0 = 1 and n = 7;m0 = 2, with combination weights
33 and 263/18, respectively (this was the choice adopted while fitting the present
model). The coefficients of a few combined extrapolation series (optimized for
the integration of the solar system) are given in Table III. Figure 4 displays the
integration error on the right ascension of the Moon in a few selected cases (the
deviation of the present model from the reference data is plotted in Figure 1).

The performance of the above method has been compared with that of other
extrapolation methods tested by Montenbruck (1992), using 64 bits double pre-
cision arithmetics for consistency of the comparison. On a test two-body system
with small eccentricity (e = 0:1), a standard length of 3.2 revolutions is covered
with a relative accuracy of 5 � 10�13 and 1080 function calls. This result compares

cele1763.tex; 27/08/1997; 8:39; v.7; p.14



REAL TIME PRODUCTION OF FUNDAMENTAL EPHEMERIDES 307

Table III
Combination weights and corresponding coefficients of the combined extrapolation
series, optimized for the integration of the solar system with stepsize H = 3:0 d.

n = 9 n = 8 n = 7

wn; wn�1 1; 1/8 33; 263/18 1; 8786/19656
n
b0 5158162409400 2334743611200 922442320800

n
b1 17 �858 33462

n
b2 �3369366 50690640 �480397632

n
b3 2683245609 �17816559525 71157646989

n
b4 �187955429376 672209567744 �1394145099776

n
b5 2819824218750 �6027587890625 7143798828125

n
b6 �11266948312191 15215848829064 �10686833516736

n
b7 46181635850240 �26048976650240 5788944826368

n
b8 �93280029296875 18541015625000

n
b9 60888955502592

favourably with the � 1700 function calls required to achieve the same accuracy
by the best extrapolation method (ODEX2) tested by Montenbruck (1992).

It is worth mentioning one final convenience of the described integration method,
which is connected to the purpose of this paper. If equidistant ephemerides are
required at time intervals smaller than the optimal stepsize, the order of the method
can be easily scaled down to avoid unnecessary computing effort and accumulation
of roundoff error. That is, n can be reduced down to 2, using in Equation (13) the
appropriate coefficients n

bj , according to Table I. For example, if a time spacing
as little as 1 min is required, a good accuracy is obtained for the lunar orbit using
n = 2 (which gives roughly the same performances of a 4th order Runge–Kutta
method).

Executable and source code (SOLEX) implementing the above model and inte-
gration method are available from the author.

5. Conclusions

The simplified model of the solar system and the integration algorithm which have
been developed constitute a convenient engine (SOLEX) for the quick computation
of high precision ephemerides, if a suitable database of starting conditions is
available to the running program. Over a short time range (�3 Cy from J2000)
the precision of the computed lunar positions is intermediate between that of the
JPL models (DE200 and DE403) and that carried by current analytical theories
(Chapront Touzé and Chapront, 1983, 1988). Over a long time range (�100 Cy
from J2000), the intrinsic uncertainty due to extrapolating the orbit far beyond the
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available observational data and, above all, the uncertainty in the tidal parameters,
makes the positions computed by this model not worse than those given by the best
model so far available. The planetary positions, with the exception of Mars over
a short time span, are computed with a precision comparable to that of the JPL
models.
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